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•  Path-integral Formulation of Hadronic Tensor in DIS 

•  Parton Degrees of Freedom  

•  Numerical Challenges 

•  Evolution of Connected Sea Partons 

•  Quasi-PDF  

  



Experimental Data 

l  New Muon Collaboration (NMC – PRL 66, 2712 (1991)) µ+ p(n) à µX  

 
    Quark parton model + Isospin  symmetry 
 
 
     
   NMC :  
 
l           asymmetry from Drell-Yan Production (PRL 69, 1726 (1992))   

l  NuTeV experiment  (PRL 88, 091802 (2002))                                                   
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Possible Explanation 
•  Perturbative QCD:  
      Higher order effects on                     is small. 
l   Sullivan Process: 

 
 
 
 
l  Need a non-perturbative formulation to reveal  
                     in QCD and a scheme to calculate  
   it quantitatively              Euclidean path-integral formalism  
   and lattice gauge calculation. 
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Hadronic Tensor in Euclidean Path-Integral Formalism 

•  Deep inelastic scattering  
    In Minkowski space 
 
 
 
 
l  Euclidean path-integral 

d 2σ
dE 'dΩ

= α 2

q4
(E '
E
)lµνWµν

 

Wµν (!q, !p,ν ) = 1
π

ImTµν = N( !p) d 4x
4π∫  eiq⋅xJµ (x)Jν (0) N( !p) spin avg

= 1
2

d 3pi
(2π )32Epi

⎡

⎣
⎢

⎤

⎦
⎥

i=1

n

∏∫
n
∑ (2π )3δ 4 (pn − p − q) < N( !p) | Jµ | n >< n | Jν | N( !p) >spin avg

0 t − (t2 − t1)0

×

t

×
Jµ
em (t1) Jν

em (t2 )

K.F. Liu, PRD 62, 074501 (2000)   
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!Wµν ( "q, "p,τ = t2 − t1) =

EP

M N

Tr < ΓeχN ( "p,t) 1
4π

 e− i"q⋅"x Jµ ( "x,t 2 )Jν (0,t 1)χN
† ( "p,0) >

"x
∑

Tr < ΓeχN ( "p,t)χN
† ( "p,0) >

t−t2>>1/ΔEP ,  t1>>1/ΔEP
⎯ →⎯⎯⎯⎯⎯⎯

= 1
4π

(
2mN

2En

) δ "pn−
"p− "q

n
∑ < N ( "p) | Jµ | n >< n | Jν | N ( "p) >spin avg  e−( En−EP )τ

=  < N ( "p) | e− i"q⋅"x

4π"x
∑ Jµ ( "x,τ )Jν (0,0) | N ( "p) >spin avg

 

Wµν (!q, !p,ν ) = 1
i

dτ  eντ  "Wµν (!q, !p,τ )
c−i∝

c+i∝

∫
                 

Laplace transform 

Wµν in Euclidean Space 
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V CSq q q= + CSq ( ?) DS DSq q= ≠
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l   

•   Bjorken limits 

l  Parton degrees of freedom: valence, connected sea and 
disconnected sea 

 
        
 

νW2 (q2,ν )⎯→⎯ F2 (x,Q2 ) = x ei
2

i
∑ (qi (x,Q

2 )+ qi x,Q
2 )( );   x = Q2

2p ⋅q

Wµν (p,q) = −W1(q
2,ν )(gµν −

qµqν
q2

)+W2 (q
2,ν )(pµ −

p ⋅q
q2

qµ )(pν −
p ⋅q
q2

qν )

       u                   d                 s 
uV (x)+ uCS (x) dV (x)+ dCS (x)

uCS (x) dCS (x)

uDS (x)+ uDS (x) dDS (x)+ dDS (x) sDS (x)+ sDS (x)
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Properties of this separation 

•  Gauge invariant 
•  Topologically distinct as far as the quark lines are 

concerned 
•  Structure functions W1 and W2 are frame independent. 
•  Small x behavior of CS and DS are different.         

qV ,  qCS  ,  qCS ~x→0   x−αR (x−1/2 )

qDS  ,  qDS ~x→0   x−1
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l  Note that diagram (b) are from pre-existing connected 
sea antipartons the same way as in (c) which involves 
pre-existing disconnected sea partons and antipartons. 

l  Whereas, current induced pair productions are 
suppressed as O(       ). 

× ×
t1 t2 × ×

t1 t2

t
 
q2 / p2

 
q×

× 
p

 
p

 
q

δ (p ⋅q + 2po
2 )



                    10 

Operator Product Expansion -> Taylor Expansion 

•  Operator product expansion  

n  Dispersion relation 

n  Expand in the unphysical region  
    

       

1 ImW Tµν µνπ
=

2

2

2 2/2

' ( , ')1 '
'NQ M

W q
T d µν
µν

ν ν
ν

π ν ν
∝

=
−∫

2 2
2 2 1   (x 1)NM p q
Q Q

ν ⋅= < >

ν
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•  Euclidean path-integral 
n  Consider  

n  Short-distance expansion (                                             ) 
 

n  Laplace transform 

     

t2t2 −τ

0 t

× ×γ ν γ µ

 

Wµν (q2,τ ) |(a)∝ D[A]detM (A) e−Sg∫  

×Tr ...M −1(t,t2 ) d 3x e− i
q⋅xiγ µM

−1(t2,t2 −τ )iγ νM
−1(t2 −τ ,0)...∫⎡

⎣
⎤
⎦

 |
x |,τ → 0  from | q |,ν →∝

 

M −1(t2,t2 −τ ) free quark⎯ →⎯⎯⎯ 1
4π 2

∂
x 2 +τ 2 ;

M −1(t2 −τ ,0) |x|,τ→0⎯ →⎯⎯  e
x⋅

D+τDτM −1(t2,0)

 
Wµν (q

2,ν )∝Tr ...M −1(t,t2 )iγ µ
−iπ (q + iD)
| q + i


D |

δ (ν + Dτ − |
q + i

D |)iγ νM

−1(t2,0)...
⎡
⎣⎢

⎤
⎦⎥
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•  Dispersion relation 

•  Expansion about the unphysical region (                   ) 

                 even + odd n terms 
l    

Tµν (q2,ν ) = 1
π

dν '
ν 'Wµν (q2,ν '− Dτ )
v '2− (ν + Dτ )2Q2 /2MN +Dτ

∝

∫ ,

∝  Tr ...M −1(t,t2 )iγ µ
−i(q + iD)

(Q2 + 2iq ⋅D − D2 )
iγ νM

−1(t2,0)...⎡
⎣⎢

⎤
⎦⎥
,

where τ = it  and Dt = iDτ  

 so that D = (

D,−iDt ) is covariant derivative in Minkowski space.  

2q ⋅ p /Q2 <1

Tµν (qV + qCS ) = ef
2

f
∑ 8pµ pν

(−2q ⋅ p)n−2

(Q2 )n−1
Af
n (CI )− 2gµν

(−2q ⋅ p)n

(Q2 )n
Af
n (CI )

n=2
∑

n=2
∑⎡

⎣
⎢

⎤

⎦
⎥

Af
n = ? Af

n (CI )∝  D[A]detM (A) e−Sg∫ Tr ...M −1(t,t2 )Of
nM −1(t2,0)...⎡⎣ ⎤⎦

Of
n

0 t

t2

 

Of
n = iγ µ1

(−i
2

)n−1

Dµ2


Dµ3

...

Dµn

,

< p |ψ  Of
nψ | p >= Af

n (CI ) 2pµ1
pµ2

...pµn
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•  Similarly for 
    except  with 
 
 
            even – odd 
 
l  For  

l  DIS with electromagnetic currents  

qCS
× ×t1 t2

t

q→−q
Tµν (qCS ) = ...Af

n

even, n=2
∑ (CI )  − ...Af

n

odd , n=3
∑ (CI )

qDS / qDS
Tµν (qDS / qDS ) = ...Af

n

even, n=2
∑ (DI )  ± ...Af

n

odd , n=3
∑ (DI )

Jµ
em

Tµν = Tµν (qV + qCS )+Tµν (qCS )+Tµν (qDS )+Tµν (qDS ),

= 2 ...[Af
n

even, n=2
∑ (CI )+ Af

n (DI )]
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Q
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Q
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×
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×
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t1 t2
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  Gottfried Sum Rule Violation 

       NMC: 
 
 
 
 
 
 
       two flavor traces (            )       one flavor trace (            ) 
 
       K.F. Liu and S.J. Dong, PRL 72, 1790 (1994) 
 
 
        
    

SG (0,1;Q2 ) = 1
3
+ 2

3
dx (uP (x)− dP

0

1

∫ (x));    SG (0,1;Q2 ) = 1
3

(Gottfried Sum Rule)

SG (0,1;4 GeV2 ) = 0.240 ± 0.016 (5σ  from GSR)
2Q

0

×

t

×
2Q

t1 t2

)(c

2Q

0 t

2Q

× ×t1 t2

uDS = dDS uCS ≠ dCS

1

0

2

1 2  ( ( ) ( )),
3 3

1 2                 (1 ( ))
3 3 CS CS

CS CS

u sd

Sum dx u x d x

n n O α

= + −

⎡ ⎤= + − +⎣ ⎦

∫
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Comments 

• The results are the same as derived from the 
conventional operator product expansion. 

• The OPE turns out to be Taylor expansion of 
functions in the path-integral formalism. 

• Contrary to conventional OPE, the path-
integral formalism admits separation of CI 
and DI. 

• For        with definite n, there is only one CI 
and one DI in the three-point function, i.e. (a’) 
is the same as (b’). Thus, one cannot separate 
quark contribution from that of antiquark in 
matrix elements. 

 

Of
n
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2
21

1
2

2

1 ( , ),
2

28 

n n

n
nN

f f
f

dI T Q
i

Me A
Q

ν ν
π ν −

−

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∫

∑

— In = 2 dν2MN

2π iQ2

∝

∫
2i
ν n−1W2 (Q2,ν ),

= 8 2MN

Q2

⎛
⎝⎜

⎞
⎠⎟

n−1

dx xn−2 2MNνW2 (Q2,ν )
40

1

∫

l  

l  

l  

Af
n=even (CI ) ≡ M f

n (CI ) = dx xn−1

0

1

∫ (qV (x)+ qCS (x)+ qCS (x)) f

Af
n=odd (CI ) ≡ M f

n (CI ) = dx xn−1

0

1

∫ qV (x) f

Af
n=even (DI ) ≡ M f

n (DI ) = dx xn−1

0

1

∫ (qDS (x)+ qDS (x)) f

Quark Parton Model 

ν
ν
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Operator Mixing 

•  Connected insertion 

 

•  Disconnected insertion 

 

d  M f
n (CI )

d logQ2 =
af
n

2b0

1
log(Q2 / Λ2 )

M f
n (CI )

d  M f
n (DI )

d logQ2 = 1
2b0

1
log(Q2 / Λ2 )

aqq
n M f

n (CI )+ 1+ (−)n

2
aqG
n MG

n⎡

⎣
⎢

⎤

⎦
⎥
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3)  Fitting of experimental data 
 
           
 
 
         But   
 
 
         A better fit  
 
         where            

u − d x→0⎯ →⎯⎯  x−1/2        O.K.

  u + d ∝  s     is not correct. 

19 

  
u (x)+ d (x)

2
= f  s (x)+ cs(x),    f ≈1

  cs(x) x→0⎯ →⎯⎯  x−1/2    like in   u (x)− d (x)

K.F. Liu, PRD (2000) 

4)   Unlike DS, CS evolves the same way as the valence. 
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1( ) ( ) ( )( ) ( )( );

(lattice) 0.857
( )

CS

s

u

x d u x x d u x x s s x
R

xR
x DI

+ = + − +

〈 〉=
〈 〉

:

How to Extract Connected Sea Partons ? 

CT10 lattice expt 

K.F. Liu, W.C. Chang, H.Y. Cheng, 
J.C. Peng, PRL 109, 252002 (2012) 

Q2=2.5 GeV2  
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qV ,  qCS  ,  qCS ~x→0   x−αR (x−1/2 )

qDS  ,  qDS ~x→0   x−1
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<x>s= 0.050(16), <x>u/d (DI=0.060(17) 
 

  <x>s /<x>u/d(DI) = 0.83(7)   Q2=2 GeV2 

Lattice calculation with overlap fermion on 3 lattices including on 
at sea mπ ~ 140 MeV (Mingyang Sun,                                  ) 
 

Lattice input to global fitting of PDF 
<x>s <x>u/d (DI) 

χ  QCD Collaboration

Data = a + bmπ ,vv
2 + cmπ ,vs

2 + dmπ ,vs
3 + ea2 + fe−mπ ,vvL
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<x>s /<x>u/d(DI) 0.83(7)   Q2=2 GeV2 

Lattice input to global fitting of PDF 
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Evolution Equations 

S. Moch et al., hep/0403192,0404111 
A. Cafarella et al., 0803.0462 

NNLO 

.

/ ( ) ;

/ ( ) ;

/ ( )

i ik k igik k
k

i kik igik k
k

gk k gggk k
k

dq dt P q P q P g

dq dt P q P q P g

dg dt P q P q P g

= ⊗ + ⊗ + ⊗

= ⊗ + ⊗ + ⊗

= ⊗ + ⊗ + ⊗

∑
∑
∑

   

dqi
− / dt = Pqq

− ⊗ qi
− +

Pns
s

N f

⊗Σv ;

where   q i
− ≡ qi − qi ,     Σv ≡ (qk − qk ),   

k
∑

and Pns
s ∼O(α s

3)

Valence u can evolve into valence d ? 
   
Note:  qi

− = qi
v+cs − qi

cs + qi
ds − qi

ds ≡ qi
v + qi

ds − qi
ds
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Evolution equations separating CS from the DS partons  

  

dqi
v+cs / dt = Pii

c ⊗ qi
v+cs + Pii

c ⊗ qi
cs;

dqi
cs / dt = Pii

c ⊗ qi
cs + Pii

c ⊗ qi
v+cs;

dqi
ds / dt = (Pik

cd ⊗ qk
ds + Pik

cd ⊗ qk
ds + Pik

d ⊗ qk
v+cs + Pik

d ⊗ qk
cs )

k
∑ + Pig ⊗ g;

dqi
ds / dt = (Pik

cd ⊗ qk
ds + Pik

cd ⊗ qk
ds + Pik

d ⊗ qk
v+cs + Pik

d ⊗ qk
cs )

k
∑ + Pig ⊗ g;

dg / dt = [Pgk ⊗ (qk
v+cs + qk

ds )+ Pgk ⊗ (qk
cs + qk

ds )
k
∑ + Pgg ⊗ g.
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Comments 

§  CS and DS are explicitly separated, leading to more equations 
    (11 vs 7) which can accommodate 

§  There is no flavor-changing evolution of the valence partons. 

    is the sum of two equations 

       

§  Once the CS is separated at one Q2 , it will remain separated     
   at other Q2.  

§  Gluons can split into DS, but not to valence and CS.  

§  It is necessary to separate out CS from DS when quark and                                 
antiquark annihilation (higher twist) is included in the evolution eqs.       
(Annihilation involves only DS.)    

    

 

,  u uds dss s≠ ≠

  
dqi

− / dt = Pqq
− ⊗ qi

− + Pds
− ⊗ (qk −  

k
∑ qk );

  
dqi

v / dt = Pqq
− ⊗ qi

v ,    qv ≡ qv+cs − q cs

  
d(qi

ds − qi
ds ) / dt =

k
∑ Pik

cd− ⊗ (qk
ds − qk

ds )+ Pds
d− ⊗ qk

v  
k
∑



Comments 
The connected sea partons (CSP) found in path-
integral formulation are extracted by combining PDF, 
experimental data and ratio of lattice matrix elements. 
It would be better to have separate evolution equations 
for the CSP and DSP. The separation will remain at 
different      .  
This way one can relate and compare the lattice 
calculation of moments in the CI and DI to the 
corresponding moments from PDF.  
It will become necessary to separate out CSP and DSP 
in evolution equations when quark and antiquark 
annihilation is involved.  

Q2
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Improved Maximum Entropy Method 
•  Inverse problem 

•  Bayes’ theorem 

•  Maximum entropy method: find           from 

•  Improved MEM (Burnier and Rothkpf, PRL 111, 182003 (2013)) 

 

D(τ ) = K(τ ,ν )ρ(ν )dν ,∫
D(τ ) = !Wµν (τ ),   K(τ ,ν ) = e−ντ ,   ρ(ν ) = Wµν (q2,ν )

P ρ |D[ ] = P D | ρ[ ]P ρ[ ]
P D[ ]

∂P ρ |D[ ]
∂ρ

= 0

P ρ |D[ ]∝ eαS−L−γ (L−Nτ )2

,   L = χ 2

2

S = dν 1− ρ(ν )
m(ν )

− ln ρ(ν )
m(ν )

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥∫

ρ(ν )
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e+e− → ρ Frank X. Lee 
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 Numerical Challenges 

•  Lattice calculation of the hadronic tensor – no 
renormalization, continuum and chiral limits, direct 
comparison with expts          PDF. 

 
     •  Bjorken x 

 
•  Range of x: 

   
x = Q2

2 p ⋅q
=

!q2 −ν 2

2(vE p−
!p ⋅ !q)

  Q
2 = 2 GeV2

   −
!q  "  !p

   

| !p |  = 3 GeV, | !q | = 3 GeV,⇒  x = 0.058

 
!p = 0,   | !q |= 2 GeV ⇒  x = 0.75
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X. Ji, PRL, 110, 262002 (2013) Large Momentum Approach 
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 Theoretical Issues  
•  Relatively simple numerically (H.W. Lin et al., 

1402.1462; C. Alexandrou et al., 1504.07455) 
•  Renormalization of quasi-distribution (LaMET)  

–  Perturbative and non-perturbatice lattice renormalization 
–  Linear divergence of the Wilson line 
   (X. Xiong, X. Ji, Z.H. Zhang, Y. Zhao, 1310.7471; 
    T. Ishikawa, Y.Q. Ma, J.W. Qiu, S. Yoshida, 1609.02018) 
 

•  How large PZ needs to be? 

   
!q(x,µ2 , Pz ) = dy

y
Z( x

y
, µ
Pz

) q( y,µ2

0

1

∫ ) + O(Λ
2

Pz
2 , M 2

Pz
2 )
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Quasi-PDF u(x) – d(x) 
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q(x) = − f (−x)
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x
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323 x 64 lattice at a = 0.06 fm 
Clover on DWF configurations 

mπ (val) = 500 MeV,  mπ (sea) = 400 MeV



                    35 

•  Negative        puzzle 

•  Larger Pz ? (How large) 
•  Lattice scale (a-1 ~ 2 GeV) too small? 
•  Range of x limited? 

fd  x) 
	
	

1.5 
	
	

1.0 
	
	

0.5 
	
	

x 
-1.0 -0.5 0.5  1.0 

	
-0.5 

	
	

-1.0 

 and  from CTEQ6 (JW Chen)
(| |) ( | |)d x d
d d

x= − −

x

present Pz  ~ 1 GeV 

q(x)

H.W. Lin, 1402.1462 
C. Alexandrou, 1504.07455 
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    Summary 
•  Formulation of the hadronic tensor in Euclidean path-

integral has revealed the connected sea parton (CSP) dof.  
•  It takes experiments, lattice calculation and global fitting of 

PDF to extract CSP.  
•  It is better to have CSP and DSP parton separated in 

evolution. This would facilitate comparison with lattice 
calculation of moments.  

•  Lattice calculation of hadronic tensor is numerically tough, 
but theoretically interpretation is relatively easy. No 
renormalization is needed and it can be calculated in the 
rest frame.  

•  Progress made with large momentum quasi-PDF. Both 
hadronic tensor and quasi-PDF approaches should be 
pursued and checked with experiments.  
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